Validation of Sherlock, a linear trajectory analysis program for use in bloodstain pattern analysis




This research validates the accuracy and efficacy of Sherlock, a recently developed program that estimates the area of origin (AO) of an impact pattern. Sherlock is an open-access, web-based software that conducts trajectory analysis by using the tangent method to estimate the area of origin. Fifty impact patterns were created at known X-, Y-, and Z-coordinates and were analyzed by upper year forensic science undergraduate students at Trent University. Individual stain data collected for each pattern were analyzed by both Sherlock and BackTrackTM/WIN. In this validation, we assess two objectives. The first evaluates the overall accuracy of the Sherlock program and the second compares the AO results between Sherlock and BackTrackTM/WIN when analyzing the same stain data. The average absolute deviation from the known using Sherlock was found to be 5.6 cm for the X-coordinate, 2.3 cm for the Y-coordinate, and 6.6 cm for the Z-coordinate. Further, when comparing the three-dimensional (3D) coordinate vector values, which considers all three coordinates as a single value, the Sherlock and known 3D AOs were shown to be similar with an average absolute deviation of 3.5 cm. Comparison between BackTrackTM/WIN and Sherlock provided statistically similar results for all comparisons (p > 0.05 in all cases), with average absolute deviations of 0.28 cm, 0.13 cm, and 0.75 cm in the X-, Y-, and Z-coordinates, respectively. This research demonstrates that the accuracy of the Sherlock program is comparable to a previously validated AO analysis program with similar absolute deviation from the true AO for single surface impact patterns.



Please reload

Featured Posts

The application of silicon sol-gel technology to forensic blood substitute development: mimicking aspects of whole human blood rheology.

January 8, 2017

Please reload

Recent Posts
Please reload

Please reload

Search By Tags

I'm busy working on my blog posts. Watch this space!

Please reload

Follow Us